ECIR 2018 ํ›„๊ธฐ

์ž‘์„ฑ |

ํšŒ์‚ฌ์—์„œ ๋ณด๋‚ด์ค€ ECIR 2018 ์ฐธ์„ ํ›„๊ธฐ๋ฅผ ๋ธ”๋กœ๊ทธ์— ์ ์Šต๋‹ˆ๋‹ค (ํšŒ์‚ฌ์— ์ œ์ถœํ•˜๋Š” ํ›„๊ธฐ๋ผ์„œ ์กด๋Œ“๋ง๋กœ ์ผ์Šต๋‹ˆ๋‹ค)

20180326_091235
ํ–‰์‚ฌ ์žฅ์†Œ์ธ ๊ทธ๋ฅด๋…ธ๋ธ” MINATEC์ž…๋‹ˆ๋‹ค
20180327_085622
์˜คํ”„๋‹ ์„ธ์…˜

ECIR (European Conference of Information Retrieval)์€ ์œ ๋Ÿฝ์ธ๋“ค์ด ์ •๋ณด ๊ฒ€์ƒ‰ ๋ถ„์•ผ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋…ผ์˜ํ•˜๋Š” ํฌ๋Ÿผ์ž…๋‹ˆ๋‹ค. ์˜ฌํ•ด๊ฐ€ 40๋ฒˆ์งธ์ธ ์ด ํ•™ํšŒ๋Š” 3์›” 26์ผ๋ถ€ํ„ฐ 29์ผ๊นŒ์ง€ ๋‚˜ํ˜๊ฐ„ ๋„ค์ด๋ฒ„๋žฉ์Šค์œ ๋Ÿฝ์ด ์œ„์น˜ํ•œ ํ”„๋ž‘์Šค ๊ทธ๋ฅด๋…ธ๋ธ”(Grenoble)์ด๋ž€ ๋„์‹œ์—์„œ ๊ฐœ์ตœ๋์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฅด๋…ธ๋ธ”์€ 1968๋…„ ๋™๊ณ„ ์˜ฌ๋ฆผํ”ฝ์ด ๊ฐœ์ตœ๋œ ๊ณณ์ด๋ผ์„œ ์ €ํฌ๋ผ๋ฆฌ๋Š” ‘ํ”„๋ž‘์Šค์˜ ํ‰์ฐฝโ€™์ด๋ผ๊ณ  ๋ถ€๋ฅด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋„์‹œ๋Š” ์ธ๊ตฌ 16๋งŒ๋ช… ์ค‘์—์„œ ํ•™์ƒ์ด 5~6๋งŒ๋ช…์— ๋‹ฌํ•  ์ •๋„๋กœ ํ•™๋ฌธ๊ณผ ์—ฐ๊ตฌ์˜ ๋„์‹œ๋ผ๋„ค์š”.

ECIR์€ ์ด์ œ CORE์˜ A๋“ฑ๊ธ‰ ์ปจํผ๋Ÿฐ์Šค๊ฐ€ ๋๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. A ๋“ฑ๊ธ‰์˜ ์˜๋ฏธ๋Š” “excellent conference, and highly respected in a discipline areaโ€๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ์œ„์— A*๋“ฑ๊ธ‰์ด ํ•˜๋‚˜ ๋” ์žˆ์Šต๋‹ˆ๋‹ค. ์•„์ง S๊ธ‰ ์ปจํผ๋Ÿฐ์Šค๊ฐ€ ๋˜๊ธฐ๋Š” ๋ฉ€์—ˆ๊ณ , ์ด์ œ ๋ง‰ B๊ธ‰ ํ•™ํšŒ์—์„œ A๊ธ‰ํ•™ํšŒ๊ฐ€ ๋๋‹ค๊ณ  ์ดํ•ดํ•˜๋ฉด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ฐœํšŒ์‚ฌ์—์„œ ๋ฐํžŒ ์˜ฌํ•ด Full paper์˜ ํ•ฉ๊ฒฉ๋ฅ ์€ 23% (39/173), Short paper์˜ ํ•ฉ๊ฒฉ๋ฅ ์€ 34% (36/106)์ด์—ˆ์Šต๋‹ˆ๋‹ค. Full paper ๊ธฐ์ค€, ์ œ์ถœ์ž์™€ ํ•ฉ๊ฒฉ์ž๋ฅผ ๊ตญ๊ฐ€๋ณ„๋กœ ๊ตฌ๋ถ„ํ–ˆ๋”๋‹ˆ ๋œฌ๊ธˆ์—†์ด ์ค‘๊ตญ๊ณผ ์ธ๋„๊ฐ€ 1,2์œ„๋ฅผ ์ฐจ์ง€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ค‘๊ตญ๊ณผ ์ธ๋„์˜ ํŒŒ์›Œ๋ฅผ ์œ ๋Ÿฝ ํ•™ํšŒ์—์„œ๋„ ๋А๋‚„ ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด๋ฒˆ ECIR 2018 ์ด ์ฐธ์„์ž ์ˆ˜๋Š” 243๋ช…์ž…๋‹ˆ๋‹ค. ํ•œ๊ตญ์ธ์€ ๋„ค์ด๋ฒ„์—์„œ ๊ฐ„ 2๋ช… (์ •ํ›„์ค‘, ์ด์Šน์šฑ) ์ด์™ธ์—๋Š” ๋„ค์ด๋ฒ„์™€์˜ ์‚ฐํ•™ ๊ฒฐ๊ณผ๋ฌผ์„ News IR ์›Œํฌ์ƒต์— ๋ฐœํ‘œํ•˜๋Ÿฌ์˜จ KAIST ์œคํƒœ์› ์”จ ๋ฐ–์— ์—†์—ˆ์Šต๋‹ˆ๋‹ค.

20180327_092039
ํ›„์›์‚ฌ์ธ ‘๋„ค์ด๋ฒ„๋žฉ์Šค์œ ๋Ÿฝ’์„ ‘NEVER Labs Europe”์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋งŒํ–‰์„โ€ฆ.

์ œ๊ฐ€ ์ด๋ฒˆ ํ•™ํšŒ์—์„œ ๋А๋‚€ 3๊ฐ€์ง€ ๊ฒฝํ–ฅ์„ ์•„๋ž˜์ฒ˜๋Ÿผ ์ •๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค.

1. Reproducibility

์ด๋ฒˆ ํ•™ํšŒ์—์„œ ๊ฐ€์žฅ ๋ˆˆ์— ๋ˆ ์ ์€ reproducible์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ๋งŽ์•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Reproducible์ด๋ž€ โ€˜์žฌํ˜„๊ฐ€๋Šฅํ•œโ€™ ์‹คํ—˜๊ณผ ์•„์ด๋””์–ด๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. 2015๋…„ ECIR์—  Reproducible IR์ด๋ž€ ์„ธ์…˜์ด ์žˆ์—ˆ๊ณ , ์ž‘๋…„ ICML์—๋„ Reproducibility in Machine Learning Research๋ž€ ์›Œํฌ์ƒต์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ ์ €์ž๋“ค์ด ์‹ค์ˆ˜๋กœ๋“  ์˜๋„์ ์œผ๋กœ๋“  ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ์ž˜๋ชป ๋‚ผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์‹คํ—˜์ด ์žฌํ˜„๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ์‹คํ—˜์˜ ๋” ์ •ํ™•ํ•œ ์˜๋ฏธ๋ฅผ ์•Œ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑฐ์ฃ . ๊ทธ๋ž˜์„œ ์š”์ฆ˜์€ ๋…ผ๋ฌธ์— ์‚ฌ์šฉ๋œ ์ฝ”๋“œ, ๋ฐ์ดํ„ฐ ๋“ฑ๋„ ํ•จ๊ป˜ ๊ณต๊ฐœํ•˜๋Š” ๊ฒŒ ๊ฒฝํ–ฅ์ž…๋‹ˆ๋‹ค.

์ด๋ฒˆ ์ปจํผ๋Ÿฐ์Šค์˜ ํ‚ค๋…ธํŠธ์™€ ์ธ๋”์ŠคํŠธ๋ฆฌ ํŠธ๋ž™์—์„œ ์ด์ ์„ ์–ธ๊ธ‰ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜๊ณ , ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ IR์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃฌ ๊ตฌ๋‘ ๋ฐœํ‘œ๋„ ๊ฝค ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. Best paper๋„ ํ†ต๊ณ„์  ์Šคํ…Œ๋จธ 3๊ฐœ๋ฅผ ์žฌ๊ตฌํ˜„ ๋ฐ ์žฌ์‹คํ—˜ํ•œ ๋…ผ๋ฌธ(G. Silvello, et al. โ€œStatistical Stemmers: A Reproducibility Studyโ€)์ด ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ €์ž๋“ค์€ 2011๋…„์— ๋…ผ๋ฌธ์œผ๋กœ ๋ฐœํ‘œ๋œ ์–ธ์–ด์— ๋…๋ฆฝ์ ์ธ ์Šคํ…Œ๋จธ 3๊ฐœ๋ฅผ ์žฌ๊ตฌํ˜„ํ•˜์—ฌ ์ผ๋ถ€์˜ ๊ฒฝ์šฐ ์›๋…ผ๋ฌธ์—์„œ ๋ณด๊ณ ํ•œ ์„ฑ๋Šฅ์ด ๋‚˜์˜ค์ง€ ์•Š์Œ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์ด ์™ธ์—๋„ ๋‹ค์Œ๊ณผ ๊ฐ™์€ Reproducible ์—ฐ๊ตฌ ๊ด€๋ จํ•œ ๋…ผ๋ฌธ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

  • Reproducing a Neural Question Answering Architecture Applied to the SQuAD Benchmark Dataset: Challenges and Lessons Learned
  • On the Reproducibility and Generalisation of the Linear Transformation of Word Embeddings

๋„ค์ด๋ฒ„์—์„œ๋„ ๋…ผ๋ฌธ์„ ์“ธ ๋•Œ ์žฌํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ์œ ๋…ํ•ด๋‘๋ฉด ์ข‹๊ฒ ์ง€๋งŒ ์‹ค์„œ๋น„์Šค ๋ฐ์ดํ„ฐ๋ฅผ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋Š” ์šฐ๋ฆฌ์˜ ์—ฐ๊ตฌ ์—…๋ฌด ํŠน์„ฑ์ƒ ์ €์ž‘๊ถŒ ๋•Œ๋ฌธ์— ๋ฐ์ดํ„ฐ ๊ณต๊ฐœ๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ์ ์€ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.

2. Deep Learning for IR

์ตœ๊ทผ์˜ ์—ฌ๋А ํ•™ํšŒ์ฒ˜๋Ÿผ ๊ฒ€์ƒ‰์— ๋”ฅ๋Ÿฌ๋‹์„ ์จ๋ณด๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋งŽ์•˜์Šต๋‹ˆ๋‹ค. ์ €์ž๋“ค์ด ๋…ผ๋ฌธ์„ ์ œ์ถœํ•˜๋ฉด์„œ ๊ฐ€์žฅ ๋งŽ์ด ๋ถ™์ธ ํ‚ค์›Œ๋“œ๊ฐ€ ‘๋”ฅ๋Ÿฌ๋‹’์ด์—ˆ์Šต๋‹ˆ๋‹ค (์ƒ๋‹น ์ˆ˜๋Š” reject ๋‹นํ–ˆ์ง€๋งŒ ใ…‹). ๋”ฅ๋Ÿฌ๋‹ ์„ธ์…˜์ด ๋‘ ๊ฐœ๋‚˜ ์žˆ์—ˆ๊ณ , ๋”ฅ๋Ÿฌ๋‹ ๊ด€๋ จ ํŠœํ† ๋ฆฌ์–ผ๋„ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

์ž‘๋…„ WSDM 2017์— ์ฐธ์„ํ•˜์˜€์„ ๋•Œ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ B. Mitra์™€ N. Craswell์ด Neural Text embedding for IR ํŠœํ† ๋ฆฌ์–ผ์„ ํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ดํ›„ ์•”์Šคํ…Œ๋ฅด๋‹ด ๋Œ€ํ•™ ์‚ฌ๋žŒ๋“ค๊ณผ Mitra๊ฐ€ ํ•จ๊ป˜ ์ด ๋‚ด์šฉ์„ ํฌํ•จํ•œ NN4IR (๋‰ด๋Ÿด๋„คํŠธ์›Œํฌ ํฌ IR)์ด๋ž€ ์ด๋ฆ„์˜ ํŠœํ† ๋ฆฌ์–ผ๋กœ SIGIR 2017, WSDM 2018์—์„œ ์ง„ํ–‰ํ•˜๋”๋‹ˆ, ECIR 2018์—์„œ๋„ ๊ฐ™์€ ํŠœํ† ๋ฆฌ์–ผ์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋งค๋ฒˆ ๋ฐœํ‘œ ๋‚ด์šฉ์€ ๊ฑฐ์˜ ๋˜‘๊ฐ™์•„ ๋ณด์ž…๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ์ธ๊ธฐ๊ฐ€ ๋–จ์–ด์งˆ ๋•Œ๊นŒ์ง€ ๋‘๊ณ ๋‘๊ณ  ํ•˜๋ ค๋‚˜๋ด…๋‹ˆ๋‹ค. ์‹œ๋งจํ‹ฑ ๋งค์นญ, Learning to rank, ๊ฐœ์ฒด๋ช… ์ฒ˜๋ฆฌ, ํด๋ฆญ ์˜ˆ์ธก, ์‘๋‹ต์ƒ์„ฑ, ์ถ”์ฒœ ์‹œ์Šคํ…œ ๋“ฑ๋“ฑ, ๊ฐ ๋ถ„์•ผ์˜ ๊ด€๋ จ ์—ฐ๊ตฌ๋“ค์„ ํ›‘์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‹œ๋งจํ‹ฑ๋งค์นญ์˜ ๊ฒฝ์šฐ, ๋ชจ๋ธ๋“ค์„ ํฌ๊ฒŒ representation ๊ธฐ๋ฐ˜ ๋ชจ๋ธ, interaction ๊ธฐ๋ฐ˜ ๋ชจ๋ธ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋กœ ๋‚˜๋ˆ ๋†“๊ณ  ๊ด€๋ จ ๋…ผ๋ฌธ๋“ค์„ ์†Œ๊ฐœํ•˜๋Š” ์‹์ž…๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰ ๋ฟ ์•„๋‹ˆ๋ผ Naver Search์—์„œ ์—ฐ๊ตฌ ๊ฐœ๋ฐœํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ DNN์ด ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉ๋˜๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์€ ๊ฒฝ์šฐ ์Šฌ๋ผ์ด๋“œ๋ฅผ ํ›‘์–ด๋ณด๋ฉด ๋„์›€์ด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

๋งˆ์ดํฌ๋กœ์Šคํ”„ํŠธ Bing ์กฐ์ง์—์„œ๋Š” ์‹ ๊ฒฝ๋ง๊ณผ gbdt๊ฐ€ ๋ชจ๋‘ ์ธ๊ธฐ ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. Q&A ์‹œ๊ฐ„์— ๋‚˜์˜จ ์ปค๋ฉ˜ํŠธ ์ค‘, ๋”ฅ๋Ÿฌ๋‹์€ ์ ์šฉ ํ›„ ์‹œ์Šคํ…œ ์œ ์ง€๋ณด์ˆ˜๊ฐ€ ํ›จ์”ฌ ํž˜๋“ค์–ด์„œ Technical debt๋กœ ๋‚จ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค๋Š” ๋…ผ๋ฌธ์ด ์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์‹ค์ œ ์—…๊ณ„์—์„œ ์“ฐ๊ธฐ ์–ด๋ ค์šธ ๊ฒƒ ๊ฐ™๋‹ค๋ž€ ์ปค๋ฉ˜ํŠธ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๋ถ€๋ถ„์„ ๊ฐ์•ˆํ•˜์—ฌ ์‹ค์‹œ์Šคํ…œ์— ์ ์šฉํ•ด์•ผํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๋ฉ”์ธ ์ปจํผ๋Ÿฐ์Šค์˜ ๋”ฅ๋Ÿฌ๋‹ ์„ธ์…˜ ๋‘๊ฐœ๋Š” ํ€„๋ฆฌํ‹ฐ๊ฐ€ ๋ณ„๋กœ๋ผ๋Š” ์˜๊ฒฌ์ด ๋งŽ์•˜์Šต๋‹ˆ๋‹ค. ์›๋ž˜ ๋”ฅ๋Ÿฌ๋‹ ์ „๋ฌธ์œผ๋กœ ํ•˜๋˜ ์‚ฌ๋žŒ๋“ค์ด ์“ด ๋…ผ๋ฌธ๋“ค์ด ์•„๋‹ˆ๋ฉฐ, ์ฐธ์‹ ํ•œ ์•„์ด๋””์–ด๋Š” ์—†์—ˆ๋‹ค๋Š” ๊ฒƒ์ด ๋„ค์ด๋ฒ„๋žฉ์Šค์œ ๋Ÿฝ์˜ ๋งˆํ‹ฐ์•„์Šค, KAIST์˜ ์œคํƒœ์› ๋‹˜, ๊ฐ™์ด ๊ฐ„ ์ด์Šน์šฑ ๋ฐ•์‚ฌ ๋“ฑ์˜ ์˜๊ฒฌ์ด์—ˆ์Šต๋‹ˆ๋‹ค.

๊ทธ๋‚˜์ €๋‚˜ ์˜คํ”„๋‹์—์„œ ๋ณด๋‹ˆ ์ €์ž๊ฐ€ ‘deep learning’์„ ํ‚ค์›Œ๋“œ๋กœ ์“ด ๊ฒฝ์šฐ ํ•ฉ๊ฒฉ์œจ์ด ๋งค์šฐ ๋‚ฎ์•˜๋Š”๋ฐ, ํ•ฉ๊ฒฉ๋œ ๋…ผ๋ฌธ๋“ค์ด ์ด ์ˆ˜์ค€์ด๋ผ๋ฉด ์›๋ž˜ ์ œ์ถœ๋œ ๋…ผ๋ฌธ๋“ค์€ ๋„๋Œ€์ฒด ์–ด๋• ์„๊นŒ์š”…. @.@

20180327_091142
์ œ์ถœ๋œ ๋…ผ๋ฌธ์˜ ํ‚ค์›Œ๋“œ ๋ถ„ํฌ. 1๋“ฑ์ด deep learning์ž…๋‹ˆ๋‹ค. (๋…ธ๋ž€์ƒ‰์€ ํ•ฉ๊ฒฉ๋œ, ๋ถ‰์€์ƒ‰์€ ๋ถˆํ•ฉ๊ฒฉ๋œ ๋…ผ๋ฌธ ์ˆ˜)

3. ๊ฒ€์ƒ‰์˜ ํˆฌ๋ช…์„ฑ๊ณผ ๊ณต์ •์„ฑ์— ๋Œ€ํ•œ ๊ณ ๋ฏผ

์šฐ๋ฆฌ ํšŒ์‚ฌ๊ฐ€ ์ข‹์•„ํ•˜๋Š” ‘ํˆฌ๋ช…์„ฑ’์„ ์–˜๊ธฐํ•˜๋Š” ๋ฐœํ‘œ์ž๋„ ๋ช‡๋ช‡ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ปจํผ๋Ÿฐ์Šค์—์„œ  ๋งํ•˜๋Š” ํˆฌ๋ช…์„ฑ์€ ๊ธฐ๊ณ„ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ‘์„ค๋ช…๊ฐ€๋Šฅํ•จ’์„ ํ‘œํ˜„ํ•˜๋Š” ๋‹จ์–ด๋กœ ์ฃผ๋กœ ์“ฐ์˜€์Šต๋‹ˆ๋‹ค. ์—…๊ณ„์—์„œ ‘์„ค๋ช…๊ฐ€๋Šฅํ•จ’์ด๋ž€ ‘๋””๋ฒ„๊น… ๊ฐ€๋Šฅํ•จ’์ด๋ž€ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ์—ฐ๊ตฌ์›์˜ ์ฝ”๋ฉ˜ํŠธ๋„ ์ธ์ƒ ๊นŠ์—ˆ์Šต๋‹ˆ๋‹ค. ๐Ÿ˜‰

๊ฒ€์ƒ‰์„ ํฌํ•จํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํˆฌ๋ช…์„ฑ, ๊ณต์ •์„ฑ, ์ฑ…์ž„๊ฐ์„ ๋‹ค๋ฃฌ ์ปจํผ๋Ÿฐ์Šค๊ฐ€ ์˜ฌํ•ด 2์›”์— ์žˆ์—ˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ”๋กœ FAT 2018 (Conference on Fairness, Accountability, and Transparency) ์ด๋ž€ ์ปจํผ๋Ÿฐ์Šค์ธ๋ฐ์š”, ํ•œ๊ตญ ์‚ฌํšŒ์—์„œ ๋„ค์ด๋ฒ„์˜ ์œ„์น˜๋ฅผ ๊ณ ๋ คํ–ˆ์„ ๋•Œ ๋„ค์ด๋ฒ„์—์„œ๋„ ๊ด€์‹ฌ์„ ๊ฐ€์ ธ์•ผํ•  ๋งŒํ•œ ์ฃผ์ œ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.

Fernando Diaz์˜ ์ฒซ๋ฒˆ์งธ ํ‚ค๋…ธํŠธ์—์„œ๋Š” ๋ชจ๋“  ์‚ฌ์šฉ์ž์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ญ‰๋šฑ๊ฑฐ๋ ค ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด์ฃผ๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๊ณผ์—ฐ ์†Œ์ˆ˜ ์‚ฌ์šฉ์ž (์ธ์ข…/์„ฑ๋ณ„/์—ฐ๋ น/์„ฑ์ ์ทจํ–ฅ ๋“ฑ)์—๊ฒŒ ๊ณต์ •ํ•˜๋А๋ƒ์— ๋Œ€ํ•œ ํ™”๋‘๋ฅผ ๋˜์กŒ๋Š”๋ฐ ๋ช…ํ™•ํ•œ ๋‹ต์€ ์—†๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์šฐ๋ฆฌ๊ฐ€ ๊ฒ€์ƒ‰์—์„œ ๊ฐœ์ธํ™”๋ฅผ ์ฑ„์šฉํ•œ๋‹ค๋ฉด ์ด๋Ÿฐ ๋‚ด์šฉ์œผ๋กœ ๋ฐ‘๋ฐฅ์„ ๊น” ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ ์‹ถ์Šต๋‹ˆ๋‹ค.

์„ธ๊ฐ€์ง€ ๊ฒฝํ–ฅ ์ด ์™ธ์˜ ์ด์•ผ๊ธฐ๋ฅผ ์ ์–ด๋ณด์ž๋ฉด…

๊ฒ€์ƒ‰์—์„œ ํ‰๊ฐ€๋Š” ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ECIR 2018์˜ ํ‚ค๋…ธํŠธ ์ค‘ ํ•˜๋‚˜๋Š” โ€œ๊ฒ€์ƒ‰ ํ‰๊ฐ€ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์ถ•โ€๊ด€๋ จ๋œ ๋‚ด์šฉ์ด์—ˆ๊ณ , ์„ธ์…˜ ์ค‘์—๋Š” Evaluation & User Behavior ์„ธ์…˜์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

Gabriella Kazai์˜ ๊ฒ€์ƒ‰ ํ‰๊ฐ€ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์ถ• ํ‚ค๋…ธํŠธ์— ๋”ฐ๋ฅด๋ฉด ํ‰๊ฐ€์˜ ์ฃผ์ฒด๋Š” โ€˜์ „๋ฌธ๊ฐ€ ์ปค๋ฎค๋‹ˆํ‹ฐโ€™ (์˜ˆ, TREC ํ‰๊ฐ€์ง‘ํ•ฉ) โ‡’ โ€˜ํฌ๋ผ์šฐ๋“œ ์†Œ์‹ฑโ€™ โ‡’ ‘์‹ค์„œ๋น„์Šค ์‚ฌ์šฉ์žโ€™๋กœ ๋ณ€ํ•ด๊ฐ€๊ณ  ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

20180328_094315
ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์„ ์ด์šฉํ•œ Bing์˜ ์˜คํ”„๋ผ์ธ ๊ฒ€์ƒ‰ ํ‰๊ฐ€

์‚ฌ๋žŒ์„ ์จ์„œ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ ํ‰๊ฐ€์ž์—๊ฒŒ ์ ˆ๋Œ€์  ํ‰๊ฐ€๋ฅผ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ๋ณด๋‹จ ๊ฒฐ๊ณผ ๋‘ ๊ฐœ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์ƒ๋Œ€์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ๋” ์ข‹๋‹ค๋Š” ์–˜๊ธฐ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.

ํฌ๋ผ์šฐ๋“œ ์†Œ์‹ฑ์œผ๋กœ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ ํ‰๊ฐ€๋ฅผ ํ•˜๋‹ค๋ณด๋ฉด ํ‰๊ฐ€ ์ธ๋ ฅ ๋ณ€๊ฒฝ์ด ์žฆ๊ณ  ํ‰๊ฐ€ ํ™˜๊ฒฝ ์ œ์–ด๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ์—ฌ๋Ÿฌ ์ด์Šˆ๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์ด์Šˆ๋“ค์„ ์„œ๋ฒ ์ดํ•œ ๋…ผ๋ฌธ(๋ฌด๋ ค ์˜ฌํ•ด 1์›”์— ๋‚˜์˜จ ๋…ผ๋ฌธ)์ธ “Quality Control in Crowdsourcing: A Survey of Quality Attributes, Assessment Techniques and Assurance Actions”์„ ์†Œ๊ฐœํ–ˆ๋Š”๋ฐ, ์ด ์ชฝ ๊ณ ๋ฏผํ•˜์‹œ๋Š” ๋ถ„์€ ํ•œ ๋ฒˆ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ๋„ ์ข‹์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

์ด ํ‚ค๋…ธํŠธ๋Š” ์˜จ๋ผ์ธ ํ‰๊ฐ€์™€ ์˜คํ”„๋ผ์ธ ํ‰๊ฐ€์˜ ๊ฐญ์„ ์ž˜ ๋ฉ”๊ฟ”์•ผ๋œ๋‹ค๋Š” ์–˜๊ธฐ๋กœ ๋๋งบ์—ˆ์ง€๋งŒ ๊ทธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” ์ •ํ™•ํžˆ ๊ธฐ์ˆ ํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

Evaluation & User Behavior ์„ธ์…˜์—๋Š” 4๊ฐœ์˜ ๋…ผ๋ฌธ์ด ๋ฐœํ‘œ๋๋Š”๋ฐ ์ฒซ ๋…ผ๋ฌธ์ธ โ€œModelling Randomness in Relevance Judgements and Evaluation Measuresโ€๋Š” ์‚ฌ๋žŒ๋“ค์ด ๋ฌธ์„œ ํ’ˆ์งˆ์„ ์ธก์ •ํ•˜ ๋•Œ ํ•˜๋‚˜์˜ ์ ์ˆ˜๋กœ agreeํ•˜๋Š” ๊ฒŒ ์‰ฝ์ง€ ์•Š์Œ์„ ๊ฐ์•ˆํ•˜์—ฌ, ์ •๋‹ต relevance label์„ random variable๋กœ ๋†“์ž๋Š” ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ๋‚˜๋จธ์ง€ 3๊ฐœ ๋…ผ๋ฌธ์€ ๊ทธ๋‹ค์ง€ ์ธ์ƒ์ ์ด์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ๊ฒ€์ƒ‰ ํ’ˆ์งˆ ํ‰๊ฐ€๋Š” ๊ฒ€์ƒ‰ ๋ถ„์•ผ์˜ ์˜์›ํ•œ ์ˆ™์ œ์ธ ๋А๋‚Œ์ž…๋‹ˆ๋‹ค.

One response to “ECIR 2018 ํ›„๊ธฐ”

  1. […] ECIR 2018์— ์ฐธ์„ ํ›„ ๊ฐ™์€ ์ง€์—ญ์— ์žˆ๋Š” ๋„ค์ด๋ฒ„๋žฉ์Šค์œ ๋Ÿฝ์„ ๋ฐฉ๋ฌธํ•˜์—ฌ ํšŒ์˜๋ฅผ ํ–ˆ๋‹ค. ์•ฝ 5๊ฐœ์›”๋งŒ์˜ ์žฌ๋ฐฉ๋ฌธ์ด๋‹ค. ํ˜ธํ…”์ด ์žˆ๋Š” ๊ทธ๋ฅด๋…ธ๋ธ” ์‹œ๋‚ด์—์„œ ํƒ์‹œ๋ฅผ ํƒ€๊ณ  ์ด๋™ํ–ˆ๋‹ค. […]

Leave a comment